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Abstract—We describe in this paper a choice relation framework for supporting category-partition test case generation. We capture the

constraints among various values (or ranges of values) of the parameters and environment conditions identified from the specification, known

formally as choices. We express these constraints in terms of relations among choices and combinations of choices, known formally as test

frames. We propose a theoretical backbone and techniques for consistency checks and automatic deductions of relations. Based on the

theory, algorithms have been developed for generating test frames from the relations. These test frames can then be used as the basis for

generating test cases. Our algorithms take into consideration the resource constraints specified by software testers, thus maintaining the

effectiveness of the test frames (and hence test cases) generated.

Index Terms—Category-partition testing, choice relation framework, choice relation table, specification-based testing, test case construction,

test frame
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1 INTRODUCTION

A CCORDING to various authors [10], [14], [18], software
testing is a labor-intensive and expensive process,

which may account for 50 percent of the total project cost.
In order to improve on its effectiveness, testing should be
well planned and organized. In particular, the construction
of test cases is an important aspect because it affects
the scope and, hence, the quality of the process [2], [8],
[11]. This inspired various researchers to develop test case
construction methods.

Among them, Ostrand and Balcer [17] have developed
the category-partition method (CPM). A category is defined
as “a major property or characteristic of a parameter
or an environment condition.” An example is the
“Account Balance” in a typical accounting application.
Such categories can easily be identified from the functional
specification of a system. Each category is partitioned into
a set of choices, which represent “all the different kinds
of values that are possible for the category.” Examples
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are “Account Balance ≥ 0” and “Account Balance < 0.”
Then, all valid combinations of choices are generated as
test frames. Invalid combinations of choices are suppressed
via various constraints. Finally, test cases are constructed
from the generated test frames. Following up on the work of
Ostrand and Balcer, several studies on CPM were conducted.
For instance, Amla and Ammann [1] and Ammann and
Offutt [2] studied the viability of applying the method
to Z specifications. Offutt and Irvine [16] investigated the
fault-detection effectiveness of CPM when applied to object-
oriented programs.

Our study of CPM reveals the following problems:

1. All the constraints among choices must be defined
manually. This can be ineffective and prone to human
errors in real-life situations where there are many such
constraints.

2. There is no precise mechanism for checking for
consistency among constraints. This may affect the
correctness and completeness of the test frames
generated.

3. The generator for processing the test specification is
meant to be run repeatedly, with additional constraints
being imposed in each round, thereby reducing the
number of test frames generated, until the software
tester can afford to run the test cases generated from
test frames [17]. Such an approach can be avoided if
resource constraints are considered during, rather than
after, the test frame generation process.

To address these problems, we propose a choice relation
framework to support CPM. Our framework includes the
following features:

• a more rigorous approach for representing different
types of constraints among individual choices,
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• consistency checks of specified constraints among
choices,

• automatic deductions of new constraints among
choices whenever possible, and

• a more effective test frame construction process.

The rest of this paper is structured as follows: Section 2
outlines the major steps of CPM. Section 3 is the core of
the paper, proposing a choice relation framework for CPM.
Section 4 describes the work related to category-partition
testing. Finally, Section 5 concludes the paper.

2 CATEGORY-PARTITION METHOD

CPM is a specification-based testing technique developed
by Ostrand and Balcer [17]. It helps software testers create
test cases by refining the functional specification of a
program into test specifications. It identifies the elements
that influence the functions of the program and generates
test cases by methodically varying these elements over all
values of interest. The method consists of the following
steps:

1. Decompose the functional specification into functional
units that can be tested independently.

2. Identify the parameters (the explicit inputs to a
functional unit) and environment conditions (the state
of the system at the time of execution) that affect the
execution behavior of the function.

3. Find categories (major properties or characteristics)
of information that characterize each parameter and
environment condition.

4. Partition each category into choices, which include all
the different kinds of values that are possible for that
category.

5. Determine the constraints among the choices of
different categories. For example, one choice may
require that another is absent or has a particular value.

6. Write the test specification (which is a list of categories,
choices, and constraints in a predefined format) using
the test specification language TSL.

7. Use a generator to produce test frames from the test
specification. Each generated test frame is a set of
choices such that each category contributes no more
than one choice.

8. For each generated test frame, create a test case by
selecting a single element from each choice in that test
frame.

3 CHOICE RELATION FRAMEWORK FOR

CATEGORY-PARTITION TESTING

Motivated by problems 1 to 3 of CPM as suggested
in Section 1, we propose a choice relation framework
to support the method. Basically, our framework helps
construct test cases from functional specifications via the
notion of a choice relation table. The intuition of this table
is to capture the constraints imposed on the choices by the

specification. These constraints are expressed as relations
between pairs of choices. They are essential information for
the automatic generation of test frames.

Our approach consists of the following major steps:

1. Decompose the functional specification into functional
units that can be tested separately.

2. For every functional unit, identify its parameters
and environment conditions and, hence, define the
categories and their associated choices.

3. Construct a choice relation table T for each functional
unit.

4. For each T , construct the corresponding choice priority
table P , which captures the relative priorities for the
use of the choices in generating test frames.

5. From each T and the corresponding P , construct the
set of test frames.

6. Create a test case from each generated test frame.

Steps 1, 2, and 6 above are identical to Steps 1, 2–4,
and 8, respectively, of CPM described in Section 2. We shall
therefore concentrate on Steps 3, 4, and 5 in our discussions
in Sections 3.1, 3.2, and 3.3, respectively.

3.1 Construction of the Choice Relation Table

As mentioned above, the choice relation table T is intended
to capture the constraints imposed by the specification on
the choices. To construct T , we need to determine the
relation between each pair of choices. This is explained in
the following sections.

3.1.1 Determination of Relations among Choices

The steps prior to the construction of T correspond to
Steps 1–4 of CPM mentioned in Section 2 and, hence,
detailed explanations are not repeated here. Instead, we
shall simply illustrate the concepts of categories and choices
through an example.

Example 1 (Loan Example). Suppose a software tester is
given the following specification:

Develop a program loan for use by ABC Bank to process applications
by its customers for personal loans, based on their employment and
credit card details. In order to evaluate an application, the program
will accept the following details from the applicant. The evaluation
criteria are not specified here.

• Employment Status: Either “Employed” or “Unemployed.”

• Type of Employment (if the applicant is working): Either “Self-
Employed” or “Employed by Others.”

• Type of Job (if the applicant is working): Either “Permanent” or
“Temporary.”

• Monthly Salary S (if the applicant is working): Either “$0 < S ≤
$2, 000,” “$2, 000 < S ≤ $3, 000,” or “S > $3, 000.”

• Type of Applicant: Either “Cardholder” or “Non-Cardholder.”

• Type of Credit Card (if the applicant is a cardholder): Either
“Gold” or “Classic.”

• Credit Limit (applicable only to a classic card): Either “$2,000”
or “$3,000.”

It should be noted that there is no credit limit for a gold card.
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Suppose the software tester decides that loan can be
tested as a whole and thus further break down into smaller
functional units is not required. Additionally, suppose the
categories and their associated choices for loan are simply
defined based on the above input details. For example,
“Employment Status” is defined as a category. Its two
associated choices are “Employment Status = Employed”
and “Employment Status = Unemployed.” When there is
no ambiguity, we can simply refer to these two choices as
“Employed” and “Unemployed.” 1 2

Before we proceed further, let us define the concepts of
test frames, valid choices, and relations among choices.

Definition 1 (Test Frames and their Completeness). A test
frame B is a set of choices. A test frame B is said to be complete
if, whenever a single element is selected from each choice in
B, a standalone input will be formed. Otherwise, it is said to
be incomplete.

Definition 2 (Set of Complete Test Frames Related to a
Choice). Let TF denote the set of all complete test frames. Given
any choice x, we define the set of complete test frames related
to x as TF (x) = {B ∈ TF : x ∈ B}. A choice x is valid if
and only if TF (x) is nonempty.

Different types of relations are possible for a given pair
of valid choices, as illustrated in the following example:

Example 2 (Relation between Two Choices). Consider
the specification of the program loan in Example 1.
TF (“Classic”) contains all the complete test frames
containing the choice “Classic” in the category “Type of
Credit Card.” The relation between “Classic” and any other
choice x can be one of three types:

• x ∈ B for any B ∈ TF (“Classic”). An example of x is
the choice “Cardholder” under the category “Type of
Applicant.”

• x ∈ B for some, but not all, B ∈ TF (“Classic”).
Consider the following two complete test frames B1

and B2 ∈ TF (“Classic”):

B1 = {Unemployed, Cardholder, Classic, $2,000}

B2 = {Unemployed, Cardholder, Classic, $3,000}

Suppose x = “$2,000.” It is obvious from B1 and B2

that x appears in some, but not all, B ∈ TF (“Classic”).

• x 6∈ B for any B ∈ TF (“Classic”). An example of
x is the choice “Non-Cardholder” under the category
“Type of Applicant.” Another example of x is the
choice “Gold” under the category “Type of Credit
Card.”

1. One may argue that we need a further category “Status of Customer
Master File” to reflect the environment condition, with three associated
choices “File Does Not Exist,” “File is Empty,” and “File is Not Empty.”
For simplicity of illustration, however, we shall only concentrate on the
categories and choices defined for input parameters in this example.

2. It should be noted that a choice can be defined for a range of values.
For example, “$0 < S ≤ $2, 000,” “$2, 000 < S ≤ $3, 000,” and “S >

$3, 000” are three possible choices for the category “Monthly Salary (S).”

Because of the importance of the above distinction, we
define the three corresponding types formally as follows:

Definition 3 (Relation between Two Choices). Given any
valid choice x, its relation with another valid choice y (denoted
by x 7→ y) is defined in terms of one of three relational
operators as follows:

1. x is fully embedded in y (denoted by x ⊏ y) if and only
if TF (x) ⊆ TF (y).

2. x is partially embedded in y (denoted by x ⊏P y) if and
only if TF (x) 6⊆ TF (y) and TF (x) ∩ TF (y) 6= ∅.

3. x is not embedded in y (denoted by x 6⊏ y) if and only if
TF (x) ∩ TF (y) = ∅.

The choice relations “full embedding” and “nonem-
bedding” in the above definition have straightforward
meanings in ordinary logic and, hence, the motivation
behind them is fairly obvious. On the other hand, the
motivation behind the choice relation “partial embedding”
merits some discussion.

Example 3 (Motivation behind the Partial Embedding
Relation). Consider the following simple specification in
a typical credit card system:

If Total Transaction Amount > $1,000, then add 200 bonus points.
If Average Transaction Amount > $100, then add 50 bonus points.

1. According to Definition 3, the two choices “Total
Transaction Amount > $1,000” and “Average Transac-
tion Amount > $100” are partially embedded in each
other. There is no logical relationship between them.
However, this specification is important to the user and
useful to the implementer.

2. The notion of partial embedding will be useful for
testing against problematic implementations such as
the following:

If Total Transaction Amount > $1,000, then add 200 bonus points
else if Average Transaction Amount > $100, then add 50 bonus
points.

Since the three types of choice relations in Definition 3 are
exhaustive and mutually exclusive, x 7→ y can be uniquely
determined. It should be noted that, immediately from the
definition, the relational operator for x 7→ x is “⊏,” and
the relational operator for x 7→ y is “6⊏” if x and y are two
different choices in the same category.

Example 4 (Choice Relation Table). Consider the loan
example again. The choice relation table Tloan is constructed
and depicted in Fig. 1. Let w be the total number of choices.
Let t(i, j) denote the element at the ith row and jth column
of Tloan, i, j = 1, 2, . . . , w. For t(12, 14) (Self-Employed
7→ Employed), the relational operator is “⊏” because “Self-
Employed” always requires “Employment Status” to be
“Employed.” For t(15, 10) (Unemployed 7→ Permanent),
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the relational operator is “6⊏” because “Unemployed” and
“Permanent” are mutually exclusive, as the latter requires
“Employment Status” to be “Employed.” For t(5, 15)
(Cardholder 7→ Unemployed), the relational operator is
obviously “ ⊏P .” The relational operator for the remaining
elements in Fig. 1 can be determined in a similar way.

Readers may note that the choice relations defined in
Definition 3 focus on the constraint between a pair of
choices. In situations where the relationships among three
or more input variables have to be considered at the same
time, we can define a single category that involves these
input variables. Consider, for instance, the relationship
(A + B + C = 10), where A, B, and C are input variables.
In this case, we can define a single category “A + B + C ”
with two associated choices “= 10” and “6= 10.”

It would obviously be quite inefficient and error-prone
if all the relational operators in the choice relation table
had to be defined manually, especially when the number of
choices is large. To solve the problem, we have developed
techniques for consistency checks and automatic deductions
of choice relations. These techniques are rendered possible
by a set of properties of the relational operators described
in the next section.

3.1.2 Properties of Relations among Choices

Some useful properties for the three relational operators are
stated in the following propositions and corollaries. Readers
may refer to Appendix E for the proofs of these propositions
and corollaries.

Proposition 1 (Symmetry of the Nonembedding of
Choices). For any pair of valid choices x and y, x 6⊏ y if and
only if y 6⊏ x.

Immediately from Proposition 1, we have the following
corollary:

Corollary 1 (Reverse of Full and Partial Embedding of
Choices). Let x and y be valid choices. 1) If x ⊏ y, then y ⊏ x
or y ⊏P x. 2) If x ⊏P y, then y ⊏ x or y ⊏P x.

It should be noted that the results in Corollary 1 cannot
be narrowed down any further. This is further discussed in
Appendix E of the paper.

Proposition 2 (Full Embedding of Choices). Let x, y, and
z be valid choices. 1) If x ⊏ y and y ⊏ z, then x ⊏ z. 2) If x ⊏ y
and x ⊏ z, then y ⊏ z or y ⊏P z.

Proposition 3 (Full Embedding and Nonembedding of
Choices). Let x, y, and z be valid choices. 1) If x ⊏ y and
y 6⊏ z, then x 6⊏ z. 2) If x ⊏ y and x 6⊏ z, then y ⊏P z or y 6⊏ z.

Immediately from Propositions 1 and 3, we have the
following corollary:

Corollary 2 (Full Embedding and Nonembedding of
Choices). Let x, y, and z be valid choices. 1) If x ⊏ z and
y 6⊏ z, then x 6⊏ y. 2) If y ⊏ z and x 6⊏ y, then z ⊏P x or z 6⊏ x.

Proposition 4 (Full and Partial Embedding of Choices).
Let x, y, and z be valid choices. 1) If x ⊏ y and x ⊏P z, then
y ⊏P z. 2) If x ⊏ z and y ⊏P z, then y ⊏P x or y 6⊏ x. (c) If y ⊏ z
and x ⊏P y, then z ⊏ x or z ⊏P x.

Proposition 5 (Partial Embedding and Nonembedding of
Choices). Let x, y, and z be valid choices. 1) If x ⊏P y and y 6⊏ z,
then x ⊏P z or x 6⊏ z. 2) If x ⊏P y and x 6⊏ z, then y ⊏P z or y 6⊏ z.

Immediately from Propositions 1 and 5, we have the
following corollary:

Corollary 3 (Partial Embedding and Nonembedding of
Choices). Let x, y, and z be valid choices. 1) If x ⊏P z and
y 6⊏ z, then x ⊏P y or x 6⊏ y. 2) If y ⊏P z and x 6⊏ y, then z ⊏P x
or z 6⊏ x.

Each of the above propositions and corollaries provides a
certain scope of consistency checks for the relations among
choices. For example, we know that x ⊏P y and y 6⊏ x cannot
coexist, or else it would contradict Proposition 1. However,
not all incorrectly defined relations can be identified as
inconsistencies. For example, suppose x ⊏ y and y ⊏ x
are correct but somehow mistakenly defined as x ⊏ y and
y ⊏P x. This mistake is not inherently inconsistent.

3.1.3 System Deduction Rules for Choice Relations

Consider again Propositions 1, 2.1, 3.1, and 4.1, and
Corollary 2.1. The “then” parts of these propositions and
corollary contain definite relations, which provide a basis
for automatic deductions. Thus, when appropriate relations
have been defined, other relations can be deduced. For
example, once we know that x ⊏ y and y ⊏ z, we can
conclude from Proposition 2.1 that x ⊏ z.

The effectiveness of automatic deductions, however,
varies with the chronological order of defining the relations.
The following example illustrates this point.

Example 5 (Chronological Order of Defining Choice
Relations). Consider the choices “$2,000,” “Classic,” and
“Permanent” in Fig. 1 for the loan example. Suppose the
relations ($2,000 7→ Classic), ($2,000 7→ Permanent), and
(Classic 7→ Permanent) have yet to be defined. If ($2,000 ⊏

Classic) and ($2,000 ⊏P Permanent) are manually defined
first, then (Classic ⊏P Permanent) can be deduced using
Proposition 4.1. On the other hand, if ($2,000 ⊏ Classic)
and (Classic ⊏P Permanent) are manually defined first, then
($2,000 ⊏P Permanent) must still be manually defined, since
it cannot be deduced from any of the propositions or the
corollary.

In view of Example 5, we shall propose a heuristic
approach in Section 3.1.4 to determine the chronological
order of defining relations, in order to improve on the
effectiveness of automatic deductions. First, however, we
discuss some important system deduction rules that form
the basis of our heuristic approach.

System Deduction Rule 1. Given x ⊏ y, we should
next define y 7→ z, z 7→ y, x 7→ z, and z 7→ x if they
have not yet been defined or deduced.
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Fig. 1. Choice Relation Table for the Loan Example

If y ⊏ z, then we can deduce x ⊏ z by applying
Proposition 2.1. If y 6⊏ z, then we can deduce x 6⊏ z by
applying Proposition 3.1. If z 6⊏ y, then we can deduce
x 6⊏ z by applying Corollary 2.1. If x ⊏P z, then we can
deduce y ⊏P z by applying Proposition 4.1. If z ⊏ x, then
we can deduce z ⊏ y by applying Proposition 2.1.

System Deduction Rule 2. Given x ⊏P y, we should next
define x 7→ z if it is not yet defined or deduced.

If x ⊏ z, then we can deduce z ⊏P y by applying
Proposition 4.1.

System Deduction Rule 3. Given x 6⊏ y, we should
next define z 7→ x and z 7→ y if they have not yet been
defined or deduced.

If z ⊏ x, then we can deduce z 6⊏ y by applying
Proposition 3.1. If z ⊏ y, then we can deduce z 6⊏ x by
applying Corollary 2.1.

The above system deduction rules provide the basis of
our heuristic approach for the automatic identification of
the next relation to be defined.

3.1.4 Table Construction

As explained in Section 3.1.2, an incorrectly defined choice
relation may not lead immediately to any inconsistency
highlighted by Propositions 1–5 and Corollaries 1–3. Other
choice relations may have been defined manually before
the incorrect choice relation is identified. By this time,
additional choice relations may have already been deduced
automatically by the system, some of which are erroneously
based on the original incorrect relation. It is therefore
desirable to provide a function to the tester so that an
incorrectly defined relation and the erroneously deduced
relations can be corrected during the construction of the
choice relation table. This correction function will be
discussed later in this section. Before that, we must first

explore the possible types of elements in the choice relation
table T .

Each element t(i, j) in T can be classified into one of the
following three types:

• A defined element if it is manually defined.

• A deduced element if it is automatically deduced.

• A yet-to-be-defined element if it has not been defined or
deduced.

An element t(m, n) in T is said to be an ancestor
of another element t(i, j) if the former has been used
to deduce the latter, either directly or indirectly. When
the user identifies a defined element for correction, the
system will also check (and amend if necessary) all the
elements that have been deduced from it. When the system
amends a deduced element, it will also check (and amend if
necessary) all the relevant ancestors that have been defined.
Ancestor information is therefore vital to the correction of
incorrectly defined or deduced elements in T . We use an
element relation table with parent linked lists to capture this
information. Besides, this table will also serve as a guide for
automatically identifying the next relation that should be
manually defined, as explained in Section 3.1.3 and further
elaborated below.

Given w choices, the dimension of T is w × w.
A corresponding element relation table E has the same
dimension. Each element of E , denoted by e(i, j), consists
of the following four fields:

• Type: It contains an integer value of −1, 0, or 1,
indicating that the corresponding t(i, j) is a defined,
yet-to-be-defined, or deduced element, respectively.
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• Parent-Pointer: An element t(m, n) in T is called a
parent of another element t(i, j) if the former is an
immediate ancestor of the latter. The set of all parents
of t(i, j) is represented by a parent linked list PLi,j .
If t(i, j) is a deduced element and the corresponding
pair of choices belong to different categories, then
the parent-pointer contains the header address of the
parent linked list. Otherwise, the parent-pointer is set
to a null value.

• Deduction-Pointer: If i = j or the type is 0, then the
deduction-pointer contains a null value. Otherwise, it
contains the header address of a deduction linked list
DLi,j . Each node of DLi,j contains a yet-to-be-defined
element in T which, according to the three system
deduction rules in Section 3.1.3, should be a candidate
for the next manual definition. Obviously, DLi,j may
be empty.

• Counter: This field is used to determine the relative
chance of deducing some other relations if we know
the relational operator for the corresponding t(i, j).
It contains an integer value ≥ −1. Intuitively, a
higher value in this field indicates a greater chance of
deducing other relations when we know the relational
operator. It should be noted that the value of this field
is −1 if the corresponding t(i, j) has been defined
or deduced, and this field may be updated once T is
updated.

Table 1 summarizes the possible values for the above four
fields.

Appendix A shows an algorithm build table for the
construction of T . It incorporates the features for automatic
deductions and consistency checks. The main philosophy is
to perform automatic deduction for every yet-to-be-defined
t(i, j) as far as possible and to perform consistency checks
whenever a t(i, j) is manually defined. We note that:

1. The procedure correct operator( ) will not only correct
the erroneous elements selected by the user, but also all
the deduced elements resulting from these erroneous
elements. As a result, the user need only continue
constructing the choice relation table from that point,
rather than repeat the entire table construction process.

2. For every incorrectly defined choice relation, the
number of executions required to correct this relation
as well as other related relations is in the order of
w4 in the worst case, where w is the total number of
choices. Thus, if m choice relations have been defined
incorrectly, then the number of executions is in the
order of mw4.

The algorithm also automatically identifies the next t(i, j)
to be manually defined, as guided by the system deduction
rules explained in Section 3.1.3. It would be useful to outline
the main idea behind this feature. Each element t(i, j) in T
is associated with a counter at e(i, j) of E , which provides
an estimate of the number of other relations that can be
deduced. The higher the value of the counter at e(i, j),
the greater will be the chance of the corresponding t(i, j)

Fig. 2. Input Screen for the Relation between a Pair of

Distinct Choices

to be selected for the next manual definition, so that the
chance of deducing other relations will be increased. This
is illustrated by the following example:

Example 6 (System Deduction Rules). Assume that we are
constructing the choice relation table for the loan example,
as shown in Fig. 1. Suppose that the choice relation
($2, 000 6⊏ Gold) has just been defined. According to System
Deduction Rule 3 in Section 3.1.3, we should next define
(z 7→ $2,000) and (z 7→ Gold), where z is a choice such as
“Permanent.” Suppose further that (z 7→ $2, 000) is yet-to-
be-defined and (z 7→ Gold) has been defined or deduced.
Then, the counter value for (z 7→ $2, 000) will be increased
by one, but not that for (z 7→ Gold). This will effectively
increase the chance of (z 7→ $2, 000) being selected for the
next manual definition.

We have built a prototype system implementing the
algorithm build table, in which previously presented
techniques for consistency checks and automatic deductions
have been incorporated. Fig. 2 shows the input screen for
defining the relation between a pair of distinct choices.
It also provides users with the option of defining group
constraints by means of a single manual definition

(

see
Step 5d of the procedure build table( )

)

. This will further
reduce the number of manual definitions required. When
users select the option of group constraint definitions in
Fig. 2, for instance, the relational operator “6⊏” will not
only be assigned to (Gold 7→ $2,000), but also to (Gold
7→ $3,000). Fig. 3 depicts a system screen that alerts users
about detected inconsistencies among relations, and allows
them to choose the erroneous relations to be removed.
“FullEmbedIn,” “PartEmbedIn,” and “NotEmbedIn” in the
figure represent the relational operators “⊏,” “ ⊏P ,” and
“6⊏,” respectively.

3.1.5 Empirical Studies

We have conducted empirical studies to evaluate the
effectiveness of our table construction technique and to
compare our approach with the original CPM. Our studies
involve four real-life commercial specifications:
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Given Contents of e(i, j)
t(i, j) Type Parent-Pointer Deduction-Pointer Counter

Defined −1 Null Header address of DLi,j −1

Yet-to-be-defined 0 Null Null ≥ 0

Deduced 1
Header address of PLi,j if the corresponding
pair of choices belong to different categories;
null otherwise

Header address of DLi,j if i 6= j;
null otherwise −1

TABLE 1

Contents of e(i, j) of Element Relation Table

Fig. 3. Input Screen to Trigger the Correction of Erroneous

Relations

• The specification Sregister is for the inventory registra-
tion module of an inventory management system used
by a group of public hospitals. The main functions of
the module are to record inventory details, to capture
parent-child relationships among the inventory items,
and to generate bar-code labels.

• Spurchase is for a purchase-order generation module
used by the same group of public hospitals. The
module allows purchasing officers to add procurement
information to replenishment requests sent from
various hospital units and generates purchase orders
automatically.

• Sinquiry is for an online telephone inquiry system
used in a large telecom company. The system handles
more than 60,000 inquiries a day and supports various
modes of inquiries such as incomplete name searches,
alternative name searches, and complex phonetic
searches.

• Smeal is for the meal scheduling module of a meal
ordering system used by an international airline
catering company. The main function is to determine
the quantity for every type of meal to be prepared and
loaded onto the aircrafts served by the company.

Empirical Study 1: Effectiveness of Table Construction

1. Effectiveness of Automatic Deductions and Group
Constraint Definitions. First, we identified the
categories and choices for the four specifications
described above in the usual manner. For the
categories and choices for each specification, we

randomly generated five different initial sequences of
choices. It should be noted that the actual sequence
of manually defined choice relations depends on
the initial sequence of choices and the deduction
heuristics described in Sections 3.1.3 and 3.1.4.

Table 2 shows the effectiveness of automatic
deductions and group constraint definitions in the
algorithm build table. On average, about 41.9 percent
of the choice relations were automatically deduced.
This automatic deduction feature was not available in
the original CPM, in which all the constraints among
choices had to be defined manually. In addition,
because of group constraint definitions, an extra
28.0 percent of choice relations need not be defined
individually. As a result, the amount of human effort
was significantly reduced — only about 30.1 percent of
the total number of choice relations had to be specified
manually.

2. Effectiveness of Consistency Checks. At the conclusion
of the 20 trial runs, we experienced seven erroneous
choice relations, as shown in the rightmost column
of Table 2. All these problematic cases were defined
at an intermediate stage of the table construction
process. Each error was detected by the consistency
checking mechanism almost immediately after the
manual definition, rather than after a series of
other manual definitions. A plausible explanation
is that real-life specifications involve a fairly large
number of categories and choices and, hence, a large
number of choice relations. The chance of erroneously
defining a choice relation at an intermediate stage,
and yet slipping through the consistency checking
mechanism, is very slim.

The immediate detection of inconsistencies caused
by erroneously defined choice relations also means
that the number of related choice relations to
be corrected by the procedure correct operator( )
of the algorithm build table can be kept to a
minimum. This is because, whenever an incorrect
choice relation is defined, it will be detected and,
hence, retracted immediately before it is erroneously
used for deducing other choice relations.

As mentioned earlier, the number of executions
required to correct m incorrectly defined choice
relations is O(mw4) in the worst case. Our actual
experience shows, however, that the amount of work
due to corrections is much less than that portrayed by
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% of Choice % of Choice % of Choice Relations
Specification Trial Relations Relations Generated Automatically No. of Inconsistent

Number Defined Deduced from Group Constraint Choice Relations Detected
Manually Automatically Definitions

Sregister 1 21.4 43.6 35.0 1 (detected immediately)
2 25.0 37.3 37.7 0
3 24.8 37.2 38.0 0
4 22.5 42.1 35.4 2 (detected immediately)
5 24.4 37.9 37.7 1 (detected immediately)

Spurchase 1 21.0 64.8 14.2 1 (detected immediately)
2 21.6 63.0 15.4 0
3 21.9 63.0 15.1 0
4 21.3 64.5 14.2 0
5 21.6 64.2 14.2 0

Sinquiry 1 31.0 39.3 29.7 0
2 31.9 41.0 27.0 0
3 31.8 40.8 27.4 1 (detected immediately)
4 31.0 39.3 29.7 0
5 32.3 39.9 27.8 1 (detected after next manual definition)

Smeal 1 43.5 24.9 31.7 0
2 45.4 18.9 35.7 0
3 43.5 24.9 31.7 0
4 43.5 24.9 31.7 0
5 43.0 26.0 30.9 0

Average 30.1 41.9 28.0 N/A

TABLE 2

Empirical Study 1: Effectiveness of Table Construction

this formula, because:

• Only six of the 20 trial runs involved erroneous
manual definitions. Each erroneous case involved
only one or two incorrectly defined choice
relations.

• In the six trial runs that involved erroneous
manual definitions, the incorrect choice relations
were detected almost immediately before they
were used for deducing other relations. Hence, the
number of steps involved in removing an error
was much less than O(w4).

By virtue of the consistency checking mechanism,
all the choice relations are verified before the
construction of test frames, as described in Section 3.3
below. This proves to be very handy. For the
original CPM, on the other hand, users have to check
manually for incorrectly defined constraints against
test specifications. If some incorrect constraints are
detected only after the execution of the associated
generator, certain effort will be wasted.

Empirical Study 2: Comparison with the Original CPM.
It would also be useful to further evaluate the effectiveness
of consistency checks in the choice relation framework by
comparing our approach with the original CPM. The study
involves two subjects, to be referred to as Person-A and
Person-B. Both of them have postgraduate qualifications in
computer science or information technology and have about
10 years of working experience in industry. Neither of the
subjects has been involved with the development of the
original CPM or our choice relation framework.

Before the study started, both subjects were given the
relevant sections of this paper as well as the literature
relating to the original CPM [4], [17] for self-study. We
then gave them a sample specification and asked them

to construct a TSL specification in the original CPM and
a choice relation table using the prototype system. The
exercise was followed by a thorough discussion of the
results. The idea was to familiarize them with CPM and
our framework.

After the initial training, Person-A first constructed the
choice relation tables followed by the TSL specifications for
the specifications Sregister and Spurchase . He also constructed
the TSL specifications followed by the choice relation tables
for the specifications Sinquiry and Smeal . On the other hand,
Person-B first constructed the TSL specifications followed
by the choice relation tables for Sregister and Spurchase . She
also constructed the choice relation tables followed by the
TSL specifications for Sinquiry and Smeal .

Table 3 summarizes the results of the study. It shows that
the subjects have included erroneous definitions in both the
TSL specifications and the choice relation tables. We have
two observations:

1. The number of error cases for TSL specifications (19)
was not substantially different from that of the choice
relation tables (15). The number of errors varied little
independent of whether the TSL specifications or the
choice relation tables were constructed first.

2. All 15 error cases in the choice relation tables were
corrected during table construction with the help of
the consistency checking and correction mechanisms.
About 86.7 percent of these errors were detected
immediately. The rest were detected after the next
manual definition. As a result, all the definitions were
correct at the conclusion of the table construction
processes. This feature was not available in the TSL

specifications. None of the 19 errors were detected by
the subjects themselves. We note that, when erroneous
constraint definitions are left undetected, the resulting
number of erroneous test frames is usually many times
that of the incorrect definitions.



9

Person-A Person-B
No. of Incorrect No. of Incorrect No. of Incorrect No. of Incorrect

Specification Sequence Definitions when Definitions when Sequence Definitions when Definitions when
Constructing Constructing Constructing Constructing

TSL Specification CRT TSL Specification CRT

Sregister C-T 7 0 T-C 3 1 (detected immediately)
Spurchase C-T 4 1 (detected immediately) T-C 0 1 (detected immediately)

4 (two detected immediately,
Sinquiry T-C 0 3 (detected immediately) C-T 3 the other two detected after

the next manual definition)
Smeal T-C 2 3 (detected immediately) C-T 0 2 (detected immediately)

LEGEND Sequence T-C: TSL specification constructed first, followed by choice relation table (CRT).
Sequence C-T: CRT constructed first, followed by TSL specification.

TABLE 3

Empirical Study 2: Comparison with the Original CPM

3.2 Construction of the Choice Priority Table

In most real-life situations, resource constraints are imposed
on the software tester. Hence, not all complete test frames
may be used for generating test cases for a program. A
possible approach is to define the relative priorities for
the choices based on the software tester’s expertise and
experience in the application domain. In this way, the
choices with higher priorities can first be used to generate
test frames, thus respecting both the resource constraints
and the relative importance of the choices.

Users are requested to define the following parameters
after the choice relation table T has been constructed:

1. Preferred Maximum Number of Test Frames
M . Software testers are required to define a preferred
maximum number of test frames M that they are
willing to handle. The word “preferred” implies that
M is not absolute, as the limit may be overwritten by
the minimally achievable priority level m in (c).

2. Relative Priority of Every Choice. Given w choices,
a choice priority table P with a dimension of w × 2
is constructed, capturing the relative priority of every
choice. Let p(i, 1) and p(i, 2) denote the first and
second elements, respectively, of the ith row of P .
Basically, p(i, 1) contains a valid choice xi and p(i, 2)
contains a positive integer ri. The smaller the value of
ri, the higher will be the priority of the corresponding
xi for inclusion as part of a test frame. Our framework
assumes that the smallest value of ri is 1.

3. Minimally Achievable Priority Level m. The
definition of a minimally achievable priority level m
allows the software tester to ensure that those xi’s
with ri ≤ m will always be selected for inclusion
as part of a test frame, independent of whether the
number of generated test frames exceeds M or not.
Our framework assumes that m ≥ 0. In the situation
where M should not be waived by m, the software
tester should set m to zero. In this way, M becomes the
absolute maximum number of generated test frames.

In the above, the value of M is largely dependent on
the testing resources. The more the available resources, the
higher should M be defined. As pointed out in [12], [13],
[15], 1) it would be far more effective to have an idea of the

Category Choice xi Priority ri

Employment Status Employed 1
Employment Status Unemployed 1

Type of Employment Self-Employed 2
Type of Employment Employed by Others 3

Type of Job Permanent 4
· · · · · · · · ·

TABLE 4

Choice Priority Table for Loan Example

kinds of faults that are most probable or most damaging
and then to construct test cases that are likely to reveal these
significant faults, and 2) this fault-guessing process depends
largely on the software tester’s expertise and experience.
Smaller values of ri, representing higher priorities, should
be assigned to those crucial choices xi that are likely to
reveal the significant faults. Furthermore, m should not be
assigned a value smaller than any of these ri.

Example 7 Consider the program loan in Example 1.
Suppose the software tester defines M to be 10 and
assigns the relative priority for all the choices, as illustrated
partially in Table 4. Now, suppose m is set to 3. In this
situation, the choices “Employed,” “Unemployed,” “Self-
Employed,” and “Employed by Others” will always be used
for the construction of test frames, regardless of whether the
number of generated test frames exceeds 10 or not.

3.3 Construction of Test Frames

3.3.1 Test Frames and their Relations

According to Definition 1, a test frame consists of a group
of choices. Furthermore, a test frame B is complete if and
only if, whenever a single element is selected from every
choice in B, the result will constitute a standalone input.

Consider, for instance, the following test frame for loan
in Example 1:

B
′ = {Type of Applicant = Cardholder,

Type of Credit Card = Classic,

Credit Limit = $2, 000}

B′ is incomplete because additional details such as
“Employment Status = Employed” must be supplied before



10

we have sufficient information to generate a test case for
execution.

Although B′ is incomplete, it may be a subset of a
complete test frame, such as the following:

B = {Type of Applicant = Cardholder,

Type of Credit Card = Classic,

Credit Limit = $2, 000,

Employment Status = Employed,

Type of Employment = Employed by Others,

Type of Job = Permanent,

Monthly Salary (S) = $0 < S ≤ $2, 000}

Definition 4 (Set of Complete Test Frames Related to a
Given Test Frame). Let TF denote the set of all complete test
frames. Given any test frame B′, we define the set of complete
test frames related to B′ as the set TF (B′) = {B ∈ TF :
B′ ⊆ B}. A test frame B′ is valid if and only if TF (B′) is
nonempty.

It follows immediately from Definition 4 that a complete
test frame must be valid.

Like the treatment of choices, the relations between valid
test frames can also be classified into three types:

Definition 5 (Relation between two Test Frames). Given
any pair of valid test frames B1 and B2,

1. B1 is fully embedded in B2 (denoted by B1 ⊏ B2) if and
only if TF (B1) ⊆ TF (B2).

2. B1 is partially embedded in B2 (denoted by B1 ⊏P B2) if
and only if TF (B1) 6⊆ TF (B2) and TF (B1) ∩TF (B2) 6=
∅.

3. B1 is not embedded in B2 (denoted by B1 6⊏ B2) if and
only if TF (B1) ∩ TF (B2) = ∅.

3.3.2 Properties of Relations among Test Frames

In light of Definition 5, we can extend Propositions 1–5 and
Corollaries 1–3. For example, Proposition 1 and Corollary 1
can be extended into the following dual versions:

Dual Proposition 1 (Symmetry of the Nonembedding of
Test Frames). For any valid test frames B1 and B2, B1 6⊏ B2

if and only if B2 6⊏ B1.

Dual Corollary 1 (Reverse of Full and Partial Embedding
of Test Frames). Let B1 and B2 be valid test frames. 1) If
B1 ⊏ B2, then B2 ⊏ B1 or B2 ⊏P B1. 2) If B1 ⊏P B2, then
B2 ⊏ B1 or B2 ⊏P B1.

Propositions 2–5 and Corollaries 2–3 can be extended in
a similar fashion. Readers may refer to Appendix D for a
full list of dual propositions and corollaries.

Proposition 6 (Generalization Property). Given any valid
choice x, TF ({x}) = TF (x).

Because of Proposition 6, a choice x and the test frame {x}
will be used interchangeably in this paper.

3.3.3 Deduction of Relations among Test Frames

Two very important special cases of B1 7→ B2 are B 7→
x and x 7→ B. Propositions on these special cases are
practically useful for automatic deductions of relations.
They will be discussed in this section.

Given any valid choice x and any valid test frame B,
we can only have three scenarios: 1) there exists some y ∈
B such that y 6⊏ x, 2) there exists some y ∈ B such that
y ⊏ x, and 3) y ⊏P x for every y ∈ B. Proposition 7 below
shows that these three scenarios are not only exhaustive but
also mutually exclusive. Before we present Proposition 7,
we need the following lemma.

Lemma 1 (Full Embedding Lemma). Given any valid test
frames B1 and B2, if B1 ⊆ B2, then B2 ⊏ B1.

Proposition 7 (Mutual Exclusion of Fully Embedded and
Nonembedded Choices). Let x be a valid choice and B be a
valid test frame. We cannot have any y and z ∈ B such that
y ⊏ x and z 6⊏ x.

The following proposition shows how we can uniquely
determine B 7→ x and x 7→ B when there exists some y ∈ B
such that y 6⊏ x.

Proposition 8 (Test Frame Containing Nonembedded
Choice). Let x be a valid choice and B be a valid test frame.
If there exists some valid choice y ∈ B such that y 6⊏ x, then
B 6⊏ x and x 6⊏ B.

The next proposition shows how we can uniquely
determine B 7→ x and x 7→ B when there exists some y ∈ B
such that y ⊏ x.

Proposition 9 (Test Frame Containing Fully Embedded
Choice). Let x be a valid choice and B be a valid test frame.
If there exists some valid choice y ∈ B such that y ⊏ x, then the
following will hold: 1) B ⊏ x. 2) If there exists some z ∈ B such
that x ⊏P z, then x ⊏P B; otherwise, x ⊏ B.

The following example shows that we cannot uniquely
determine B 7→ x and x 7→ B when y ⊏P x for every y ∈ B.

Example 8 (Test Frame Containing Partially Embedded
Choices Only). Let x be a valid choice and B = {y, z} be
a valid test frame. Suppose y ⊏P x and z ⊏P x. In this case,
B 7→ x and x 7→ B may take one of the forms depicted
in Fig. 4. It can be seen from the figure that the relational
operator for B 7→ x and x 7→ B may be “⊏,” “ ⊏P ,” or “6⊏.”

In spite of the above limitation, the next proposition
shows that x 7→ B can still be determined in some
circumstances.

Proposition 10 (Test Frame Containing Fully Embedding
Choices Only). Let x be a valid choice and B be a valid test
frame. We have x ⊏ B if and only if x ⊏ y for every y ∈ B.

In summary, except when y ⊏P x for every y ∈ B, both
the relational operators for B 7→ x and x 7→ B can be
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uniquely determined using Propositions 8 and 9. Even in
the partial embedding case, x 7→ B can still be determined
using Proposition 10 under certain circumstances. Thus, a
manual definition of relational operators is not required in
all these cases. This proves to be very handy in test frame
construction, which will be discussed in Section 3.3.4.

3.3.4 Test Frame Construction

Our approach for the construction of test frames is
incremental, consisting of the following two steps:

1. For every unprocessed choice x, combine it with
each test frame B to form one or more test frames
Bnew ’s. Continue with this process until the resource
constraints in terms of M and m have been exceeded.

a. The selection of x depends on its relative priority,
so that choices with higher priorities are selected
first for combining with existing B’s to form
Bnew ’s.

b. The relational operators for B 7→ x and x 7→
B determine how to generate Bnew ’s. Hence,
these operators are indispensable in test frame
construction. They are determined automatically
using Propositions 8 and 9 except when y ⊏P x
for every y ∈ B. In the latter case, x 7→ B can be
determined using Proposition 10 under certain
circumstances. Furthermore, when B consists
only of a single choice y, B 7→ x and x 7→ B
are effectively the same as y 7→ x and x 7→ y
because of Proposition 6. Hence, they can be
found directly from the choice relation table.

2. For every incomplete test frame Bnew generated in
Step 1, extend it into a complete test frame.

Before we present our construction algorithm for test
frames, we have to discuss the construction rules first.
These rules help us to generate new test frames in an
incremental manner.

Given a valid choice x and a valid test frame B, it follows
from Dual Proposition 1 and Dual Corollary 2 that the only

possible relations between x and B are 1)B 6⊏ x and x 6⊏ B,
2) B ⊏ x and x ⊏ B, 3) B ⊏ x and x ⊏P B, 4) B ⊏P x and
x ⊏ B, and 5) B ⊏P x and x ⊏P B.

If we know the relations between x and B, we can use
the following rules to construct new test frames:

Construction Rule 1. If B 6⊏ x and x 6⊏ B, then
any complete test frame containing x will not contain
B, and any complete test frame containing B will not
contain x. To generate all the complete test frames for
this situation, we need to retain the original test frame
B and construct a new test frame {x}.

Construction Rule 2. If B ⊏ x and x ⊏ B, then any
complete test frame containing B will contain x and vice
versa. To reflect the situation, we replace B by a new test
frame B ∪ {x}.

Construction Rule 3. If B ⊏ x and x ⊏P B, then any
complete test frame containing B will contain x but not
vice versa. To reflect the situation, we replace B by new
test frames {x} and B ∪ {x}.

Construction Rule 4. If B ⊏P x and x ⊏ B, then any
complete test frame containing x will contain B but not
vice versa. To reflect the situation, we need to retain the
original test frame B and construct a new test frame
B ∪ {x}.

Construction Rule 5. If B ⊏P x and x ⊏P B, then complete
test frames containing B may or may not overlap with
complete test frames containing x. To generate all the
complete test frames for this situation, we retain the
original test frame B and construct new test frames {x}
and B ∪ {x}.

Let x be a valid choice and B be a valid test frame. If
there exists some valid choice y ∈ B such that y 6⊏ x, then
by Proposition 8 and Construction Rule 1, we need to retain
the original test frame B and construct a new test frame {x}.
If there exists some valid choice y ∈ B such that y ⊏ x, then
by Proposition 9 and Construction Rules 2 and 3, we should
replace B by a new test frame B ∪{x}, and add a new test
frame {x} if appropriate. If x ⊏ y and y ⊏P x for every y ∈ B,
then by Proposition 10, Construction Rule 2 or 4 should
apply. Since every test frame generated by Construction
Rule 2 will also be generated by Construction Rule 4 but not
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vice versa, we recommend applying Construction Rule 4 in
order to play safe and avoid possible omissions. Thus, we
shall retain the original test frame B and construct a new
test frame B ∪ {x}.

For the case where y ⊏P x for every y ∈ B and
no other information is known, we recommend applying
Construction Rule 5 so as to play safe and avoid possible
omissions, since every test frame generated by any of
Construction Rules 1 to 4 will also be generated by
Construction Rule 5 but not vice versa. Thus, the original
test frame B will be retained and new test frames {x}
and B ∪ {x} will be constructed. By Proposition 7, the
above scenarios are mutually exclusive and, hence, the
recommended procedure is well defined.

Appendix B shows the algorithm build test frame for
the incremental construction of test frames. As we can see
from this algorithm, the number of executions is in the
order of c × w × M in the worst case, where c is the total
number of categories, w is the total number of choices,
and M is the absolute maximum number of generated test
frames.

On the completion of build test frame, all the test
frames generated are stored in K. Furthermore, because of
Step 2.2.b.v in build test frame( ), all the generated test
frames are distinct.

3.3.5 Test Frame Extension

In the algorithm build test frame, a preferred maximum
number of test frames M and a minimally achievable
priority level m are used by the software tester to specify
the resource constraints. As a result, some of the choices
may remain unprocessed or partially processed when the
algorithm is terminated because of resource limitations. In
this way, some test frames in K may not be complete.
Obviously, these incomplete test frames should be extended
further.

Given any incomplete test frame B, we would like to
extend it to include valid choices x that remain unprocessed
or partially processed, as long as B and x do not mutually
exclude each other. The extension rule can easily be
formulated using the relation B 7→ x, as follows:

Extension Rule. When B is fully or partially embedded
in x, extend B into B ∪ {x}. When B is not embedded
in x, do not change B.

We observe that the number of test frames will remain
unchanged when the extension rule is applied. Hence, we
can preserve the constraint on the number of generated test
frames as imposed by M and m.

To determine B 7→ x for the extension rule, we note the
following:

1. If B consists only of a single choice, we can determine
B 7→ x from the choice relation table.

2. Otherwise, if there exists some valid choice y ∈ B such
that y 6⊏ x, then by Proposition 8, we have B 6⊏ x.

3. Otherwise, if there exists some valid choice y ∈ B such
that y ⊏ x, then by Proposition 9, we have B ⊏ x.

4. Otherwise, if x ⊏ y for every valid choice y ∈ B, then
by Proposition 10, we have x ⊏ B. Hence, by Dual
Corollary 2.1, we must have B ⊏ x or B ⊏P x.

For those cases not covered above, users will be requested
to define B 7→ x manually. Based on the above logic, we
have developed an algorithm called extend test frame (as
shown in Appendix C), which extends every incomplete
test frame generated by build test frame. For this
algorithm, the number of executions involved is in the order
of c×w×N in the worst case, where c is the total number
of categories, w is the total number of choices, and N is the
total number of generated test frames.

Once we have a set of complete test frames, the
generation of test cases is straightforward. Given any
complete test frame B, we randomly select a single element
from each choice contained in B. The set of elements thus
selected will constitute a test case corresponding to B.
Consider, for example, the following complete test frame
generated by the algorithm extend test frame:

B1 = {Type of Applicant = Cardholder,

Type of Credit Card = Classic,

Credit Limit = $2, 000,

Employment Status = Employed,

Type of Employment = Employed by Others,

Type of Job = Permanent,

Monthly Salary (S) = $0 < S ≤ $2, 000}

The following may be selected as a test case corresponding
to B1:

Type of Applicant = Cardholder,

Type of Credit Card = Classic,

Credit Limit = $2, 000,

Employment Status = Employed,

Type of Employment = Employed by Others,

Type of Job = Permanent,

Monthly Salary (S) = $1, 358

3.3.6 Merits of Test Frame Construction

Our choice relation framework supports CPM mainly in
1) consistency checks and automatic deductions of choice
relations, and 2) the automatic but constrained generation
of test frames. The effectiveness of consistency checks,
automatic deductions, and group constraint definitions
has been discussed in Section 3.1.5. The approaches in
constraining the total number of generated test frames can
be compared as follows:

• In the original CPM, special annotations [error] and
[single] can be attached to a choice x, so that
a complete test frame containing only x will be
generated [4], [17]. The [error] annotation is designed
to test a particular value that will cause an exception
or other error state. It is assumed that any call of the
function with this particular value in the annotated
parameter or environment condition will result in
the same error. On the other hand, the [single]
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annotation is intended to describe special, unusual, or
redundant conditions that do not need to be combined
with other possible choices. The main purpose of using
these two annotations is to reduce the number of
complete test frames generated.

Given a special choice x, this objective can also be
achieved through our framework by defining all the
choice relations x 7→ y as x 6⊏ y for any choice x 6= y. In
this case, x will not be combined with any other choices
to form complete test frames. Instead, a single complete
test frame containing only x will be generated.

• In the original CPM, the number of generated test
frames can only be reduced by means of incorporating
additional constraints among choices. As a result, the
tester does not have direct control of the exact number
of test frames generated. After all the constraints
have been taken into consideration, further reduction
will not be possible even if the number of generated
test frames is still too large for the available testing
resources. On the contrary, our framework provides a
means of further reducing the number of test frames
after all the choice relations (that is, constraints) have
been considered. This is achieved using M , m, and the
relative priorities of individual choices, as explained in
Section 3.2.

4 RELATED WORK

It would be worth reviewing other work related to the
original CPM and our choice relation framework:

1. Amla and Ammann [1] suggest that CPM is applicable
to natural-language functional specifications, which
may be incomplete and unstructured. Software testers
will need undue effort to define testing requirements,
thus hampering the effectiveness of the method. On
the other hand, they argue that testing requirements
are, to a large extent, already captured in formal
specifications. They analyze the feasibility of applying
CPM to Z specifications and verify that testing
requirements can be derived from formal specifications
more easily.

2. Following up on the above study, Ammann and
Offutt [2] define a minimal coverage criterion, called
the base-choice-coverage criterion, for category-partition
testing. They develop a procedure for converting Z
specifications into test specifications that satisfy this
criterion and introduce a method to produce test scripts
from the test specifications.

3. Using the notion of test templates, Stocks and
Carrington [19] develop a unified, flexible, and
formal framework for specification-based testing. Their
framework provides not only a formal model of
tests and test suites, but also a method for applying
the model in testing. In this way, test suites can
be constructed in a concise and formal manner.
They also investigate several application areas of the
framework, including test oracles, refinement, and
regression testing.

4. Zeil and Wild [20] observe that test descriptions
generated by testing criteria are, effectively, sets of
constraints that define test cases. Solutions to a set
of constraints correspond to actual test data. 3 There
may, however, be more that one solution, and a
common practice is to choose one of them arbitrarily.
Zeil and Wild argue that some solutions may have a
higher probability of revealing failures. Hence, they
suggest a refinement process to reduce the solution
set with the aim of identifying test data with a higher
failure-revealing capability. Refinement is achieved by
imposing further constraints incrementally.

5. Offutt and Irvine [16] investigate the effectiveness of
fault detection in object-oriented programs using test
cases generated by CPM. Common types of faults in
C++ programs are identified. Such faults are inserted
into two programs. Test cases are then generated using
CPM with a view to uncovering these seeded faults.
Their results show that these test cases help identify
almost all the faults, except those involving memory
management. They propose that C++ programs can
be tested effectively by combining CPM with a tool
for detecting memory management faults. They further
conclude that traditional testing techniques, such as
CPM, are also effective for testing object-oriented
programs and, hence, software developers do not need
new testing methods in the object-oriented paradigm.

6. Grochtmann and Grimm [11] propose a classification-
tree method to help construct test cases from functional
specifications. In this method, a classification tree,
which is in the form of a hierarchical structure,
organizes classifications and classes at alternate levels. 4

The basic approach of the classification-tree method is
very similar to that of CPM, namely, to build a model
of the constraints in the input domain with a view to
generating all the valid test frames while suppressing
invalid ones as far as possible. Chen et al. [7] further
study how to improve on the tree structure to facilitate
the construction of test frames.

7. Previous work has also been done on test case
prioritization. For example, Avritzer and Weyuker [3]
develop load testing strategies to generate test suites
to check the resource allocation behavior of software
systems according to operational profiles. Elbaum et
al. [9] study version-specific test case prioritization
techniques in regression testing, with a view to
improving the rate of fault detection.

The major difference between approaches 1–3 and ours
is that the former are based on formal specifications. In our
project, rather than formalizing the specification language,
we attempt to improve on CPM by proposing a rigorous and
systematic framework. On the other hand, both approach 3

3. Note that the term “test case” used by Zeil and Wild corresponds
to “test frame” in our choice relation framework, while their term “test
data” corresponds to “test case” in our terminology.

4. Classifications and classes in the classification-tree method correspond
to categories and choices in CPM, respectively.
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and ours provide a formal framework to systematically
define test suites for specification-based testing.

In aproaches 3 and 4, the notion of refinement has
been used to derive test cases. Our framework can also
support the generation of test cases via refinement, such
as by splitting choices or imposing additional constraints
on choices. It will be interesting to investigate, as future
research, how the concept of refinement can be used to
enhance the choice relation framework so as to further
facilitate the construction of test cases from test frames.

With regard to approach 5, we note that discussions on
the testing of object-oriented software are beyond the scope
of the current paper. Readers may refer to [5], [6] for our
perspective on this topic.

CPM and 6 differ in how invalid test frames are modeled
and suppressed. CPM achieves this by capturing constraints
in textual form whereas approach 6 represents constraints
in the form of tree structures. It has been found that the
latter approach may not be applicable to every scenario.

Finally, the work highlighted in approach 7 studies the
generation of test suites to cover states in proportion to their
use [3], or the prioritization of existing tests in regression
testing [9]. On the other hand, our work addresses
prioritization from the perspective of the specification-
based CPM.

5 CONCLUSION

In this paper, we have developed a choice relation
framework for supporting category-partition test case
generation. The major merits of the framework are:

1. We capture the constraints among choices in a rigorous
and systematic manner via the introduction of various
relations.

2. We improve on the effectiveness and efficiency
of complete test frame construction by means of
consistency checks and automatic deductions of
relations.

3. We provide a means of removing only the incorrectly
defined relations and any related ones, thereby saving
the effort of repeating the entire construction process
for the choice relation table.

4. We provide a direct way to control the maximum
number of generated test frames.

5. We enable the software tester to specify the relative
priorities for choices that are used for the subsequent
formation of complete test frames.

We have applied our approach to real-life situations and
reported on the effectiveness of consistency checks and
automatic deductions of choice relations.

APPENDIX A
ALGORITHM FOR CONSTRUCTING THE CHOICE

RELATION TABLE

Procedure build table(T )

1. Initialization of Buffer of Manually Defined
Relations BR and List of Previously Defined and
Deduced Relations LR

a. Initialize BR as an empty linked list. It will be
used for storing temporarily the choice relations
defined manually by users.

b. Initialize LR as an empty linked list. Each element
of LR is a linked list that captures the contents of
the choice relation table T immediately before the
system carries out a correction of erroneous choice
relations.

2. Initialization of Element Relation Table E

3. Initialization of Diagonal Elements

4. Initialization of Elements for Different Choices of
the Same Category

For every element t(i, j) in T such that i 6= j and
the corresponding pair of choices belong to the same
category, initialize t(i, j) and update the relevant
entries and deduction linked lists in E using the
procedure update deduction details(i, j).

5. Updating of Choice Relation Table T

Repeat the following until all the elements t(i, j) in
T have been defined or deduced:

a. Choose an element t(i, j) with the largest counter
value of e(i, j). If there is more than one such
t(i, j), then arbitrarily choose one of them.

• If the relational operator for t(i, j) appears in
the buffer BR, then move it to T .

• Otherwise, prompt the user to define the
relational operator for t(i, j) and store it in
T .

b. Set the type and the counter of e(i, j) to −1.

c. Update the relevant counters and deduction
linked lists in E , using the procedure
update deduction details(i, j).

d. Suppose t(i, j) in Step 5a corresponds to the
choice relation x 7→ y, where y (6= x) is under the
category Y . If, for every choice y′ (6= y) under
Y , the choice relation x 7→ y′ is not found in
T and BR, then confirm with the user whether
the relational operator for t(i, j) should also
be applied to all such x 7→ y′. If so, store the
relational operators for all x 7→ y′ into the buffer
BR.
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e. Perform consistency checks for all the defined
and deduced elements in T using the propo-
sitions and corollaries of Section 3.1.2. If no
inconsistency is detected, then proceed to Step 5f.
Otherwise, check whether the combination of
defined and deduced elements in T exists in the
linked list LR. If so, alert the users that they have
encountered this problem before, and prompt
them to define another relational operator for
t(i, j). Otherwise, perform the following:

• Append a copy of the contents of T to the
linked list LR.

• For any set of inconsistent elements S =
{t(m1, n1), t(m2, n2), . . ., t(mk, nk)} in T , alert
the users about the following:

i. every element in S that is manually
defined,

ii. every element in S that is automat-
ically initialized in Step 4 of this
procedure, and

iii. the manually defined ancestor(s) of
every element in S that is automat-
ically deduced in Step 5f of this
procedure.

Then, prompt the user to select the erroneous
ones from Steps i and iii above.

• Correct the selected elements using the
procedure correct operator( ).

Repeat Step e until no inconsistency is detected.

f. Whenever possible, perform automatic de-
ductions for yet-to-be-defined elements, using
Propositions 1, 2.1, 3.1, and 4.1, and Corollary 2.1.
For every element t(p, q) whose relational
operator has been deduced,

• Set the type of e(p, q) to 1 and the
corresponding counter to −1.

• Update the relevant counters and deduc-
tion linked lists in E using the procedure
update deduction details(p, q).

• Initialize PLp,q as an empty linked list, and
store its header address in the parent-pointer
of e(p, q).

• Append each parent element of t(p, q) to PLp,q .

Procedure update deduction details(i, j)

1. Initialize DLi,j as an empty linked list, and store its
header address in the deduction-pointer of e(i, j).

2. Identify all the elements t(m, n) of T such that the
system deduction rules in Section 3.1.3 can be applied.
For every such t(m, n),

a. If the counter in the corresponding e(m, n) is
smaller than the largest integer value supported
by the system, then increase it by one; and

b. Append a node “(m, n)” to DLi,j .

3. For every defined or deduced element t(p, q) in T ,
delete the node “(i, j),” if any, from the corresponding
DLp,q .

Procedure correct operator(m, n)

1. Delete the following from T :

a. the manually defined element t(m, n), and

b. all the deduced elements, if any, that have t(m, n)
as an ancestor.

Note that the ancestor information of an element can
be obtained from its parent linked list.
To delete an element t(p, q) from T :

i. Set the type of the corresponding e(p, q) to 0
and its parent-pointer to null.

ii. Set the counter of the corresponding e(p, q)
to the largest integer value supported by the
system. This ensures that t(p, q) has the
highest priority for the next manual definition.

iii. For every element t(x, y) of T corresponding
to an element (x, y) of the deduction linked
list DLp,q , decrease the counter of e(x, y) by
one.

iv. Set the deduction-pointer of e(p, q) to null.

2. Prompt the user to define the relational operator for
t(m, n) and store it in the buffer BR.

APPENDIX B
ALGORITHM FOR GENERATING TEST FRAMES

Procedure build test frame(T , P , K )

In this procedure, a linked list K is used to store all the
generated test frames. In terms of data structures, each
element of the linked list K points to a linked list whose
elements are the choices of a test frame.

1. Initialization

1.1. Input the preferred maximum number of com-
plete test frames M and the minimally achievable
priority level m.

1.2. Suppose r denotes the relative priority of a choice
in the choice priority table P . Set the current
priority level (denoted by L) to the minimum r
defined.

1.3. Initialize K as an empty linked list.

2. Construction of Possible Test Frames

Let N(K) denote the total number of test frames stored
in K. While (there exists any unprocessed choice) and
(L ≤ m or N(K) < M), do the following:
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2.1. Select an unprocessed choice x with priority level
L.

2.2. If N(K) = 0, then store the test frame {x} into K.
Otherwise, perform the following:

a. Initialize K new as an empty linked list. This
linked list has the same structure as K.

b. Let N(K new ) denote the total number of test
frames stored in K new . While N(K) > 0 and
(L ≤ m or (N(K) + N(K new ) < M)), do the
following:

i. Select any test frame B from K.

ii. Determine B 7→ x and/or x 7→ B using
Propositions 8, 9, and 10. Then, generate
new test frames for K new according to the
recommendations in Section 3.3.4.

iii. Store all the newly generated test frames in
K new . If, according to the construction rule,
B should be retained, then store it into K new

also.

iv. Delete B from K.

v. Remove all but one duplicated test frame
from K new .

c. For every Bnew in K new , move it to K until
N(K new ) = 0 or (L > m and N(K) ≥ M).

2.3. Set L to the smallest relative priority of all the
unprocessed choices, if any.

APPENDIX C
ALGORITHM FOR EXTENDING INCOMPLETE TEST

FRAMES

Procedure extend test frame(T , P , K )

For every unprocessed or partially processed choice x in
the choice priority table P , repeat the following for all the
test frames B in K:

1. If B consists only of a single choice, determine B 7→ x
from the choice relation table. Extend B into B ∪ {x}
if B ⊏ x or B ⊏P x.

2. Otherwise, if there exists some valid choice y ∈ B such
that y 6⊏ x, then take no action.

3. Otherwise, if there exists some valid choice y ∈ B such
that y ⊏ x, then extend B into B ∪ {x}.

4. Otherwise, if x ⊏ y for every valid choice y ∈ B, then
extend B into B ∪ {x}.

5. Otherwise, prompt the user for B 7→ x. Extend B into
B ∪ {x} if B ⊏ x or B ⊏P x.

APPENDIX D
DUAL PROPOSITIONS AND COROLLARIES

Dual Proposition 1 (Symmetry of the Nonembedding of
Test Frames). For any valid test frames B1 and B2, B1 6⊏ B2

if and only if B2 6⊏ B1.

Dual Corollary 2 (Reverse of Full and Partial Embedding
of Test Frames). Let B1 and B2 be valid test frames. 1) If
B1 ⊏ B2, then B2 ⊏ B1 or B2 ⊏P B1. 2) If B1 ⊏P B2, then
B2 ⊏ B1 or B2 ⊏P B1.

Dual Proposition 2 (Full Embedding of Test Frames). Let
B1, B2, and B3 be valid test frames. 1) If B1 ⊏ B2 and B2 ⊏ B3,
then B1 ⊏ B3. 2) If B1 ⊏ B2 and B1 ⊏ B3, then B2 ⊏ B3 or
B2 ⊏P B3.

Dual Proposition 3 (Full Embedding and Nonembedding
of Test Frames). Let B1, B2, and B3 be valid test frames. 1) If
B1 ⊏ B2 and B2 6⊏ B3, then B1 6⊏ B3. 2) If B1 ⊏ B2 and
B1 6⊏ B3, then B2 ⊏P B3 or B2 6⊏ B3.

Dual Corollary 3 (Full Embedding and Nonembedding
of Test Frames). Let B1, B2, and B3 be valid test frames. 1) If
B1 ⊏ B3 and B2 6⊏ B3, then B1 6⊏ B2. 2) If B2 ⊏ B3 and
B1 6⊏ B2, then B3 ⊏P B1 or B3 6⊏ B1.

Dual Proposition 4 (Full and Partial Embedding of Test
Frames). Let B1, B2, and B3 be valid test frames. 1) If B1 ⊏ B2

and B1 ⊏P B3, then B2 ⊏P B3. 2) If B1 ⊏ B3 and B2 ⊏P B3, then
B2 ⊏P B1 or B2 6⊏ B1. 3) If B2 ⊏ B3 and B1 ⊏P B2, then B3 ⊏ B1

or B3 ⊏P B1.

Dual Proposition 5 (Partial Embedding and Nonembed-
ding of Test Frames). Let B1, B2, and B3 be valid test frames.
1) If B1 ⊏P B2 and B2 6⊏ B3, then B1 ⊏P B3 or B1 6⊏ B3. 2) If
B1 ⊏P B2 and B1 6⊏ B3, then B2 ⊏P B3 or B2 6⊏ B3.

Dual Corollary 4 (Partial Embedding and Nonembed-
ding of Test Frames). Let B1, B2, and B3 be valid test frames.
1) If B1 ⊏P B3 and B2 6⊏ B3, then B1 ⊏P B2 or B1 6⊏ B2. 2) If
B2 ⊏P B3 and B1 6⊏ B2, then B3 ⊏P B1 or B3 6⊏ B1.

APPENDIX E
PROOFS AND DISCUSSIONS OF LEMMA, PROPO-
SITIONS, AND COROLLARY

Proof of Proposition 1 (Symmetry of the Nonembedding
of Choices). This proposition follows directly from the
definition of “6⊏.”

Discussions on Corollary 1 (Reverse of Full and Partial
Embedding of Choices). Given x ⊏ y, the set of possible
complete test frames may be divided into the following
three disjoint partitions:

• P (x ∧ y): Its complete test frames must contain x, y,
and possibly other choices.

• P (y∧¬x): Its complete test frames must contain y and
possibly some other choices, but not x.

• P (¬x∧¬y): Its complete test frames contain neither x
nor y.

Partition P (x ∧ y) cannot be empty because x is a valid
choice and x ⊏ y. On the other hand, P (y ∧ ¬x) or P (¬x ∧
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¬y) may be empty. If P (y ∧ ¬x) is empty, we have y ⊏ x.
Otherwise, we have y ⊏P x.

Now, suppose x ⊏P y. In this case, the set of possible
complete test frames may be divided into the following four
disjoint partitions:

• P (x ∧ y): Its complete test frames must contain x, y,
and possibly other choices.

• P (x∧¬y): Its complete test frames must contain x and
possibly some other choices, but not y.

• P (y∧¬x): Its complete test frames must contain y and
possibly some other choices, but not x.

• P (¬x∧¬y): Its complete test frames contain neither x
nor y.

Partitions P (x∧ y) and P (x∧¬y) cannot be empty because
x is a valid choice and x ⊏P y. On the other hand, P (y∧¬x)
or P (¬x∧¬y) may be empty. If P (y∧¬x) is empty, we have
y ⊏ x. Otherwise, we have y ⊏P x.

Proof of Proposition 2 (Full Embedding of Choices).

1) The proof follows directly from the definition of “⊏.”

2) Suppose x ⊏ y and x ⊏ z. By Definition 3, TF (x) ⊆
TF (y) and TF (x) ⊆ TF (z). Hence, any complete test
frame B ∈ TF (x) is also in TF (y) and TF (z). Since x
is valid, TF (x) is nonempty. Thus, TF (y)∩TF (z) 6= ∅,
which means that y 6⊏ z cannot be true. In other words,
y ⊏ z or y ⊏P z.

Proof of Proposition 3 (Full Embedding and Nonembed-
ding of Choices).

1) The proof follows directly from the definition of “⊏”
and “6⊏.”

2) Suppose x ⊏ y and x 6⊏ z. Let us assume y ⊏ z. It
would follow from Proposition 2.1 that x ⊏ z, which
would contradict x 6⊏ z. Hence, we must have y ⊏P z or
y 6⊏ z.

Proof of Proposition 4 (Full and Partial Embedding of
Choices).

1) Suppose x ⊏ y and x ⊏P z. If we assumed y ⊏ z,
then it would follow from Proposition 2.1 that x ⊏ z,
which would contradict x ⊏P z. On the other hand,
if we assumed y 6⊏ z, then it would follow from
Proposition 3.1 that x 6⊏ z, which would also contradict
x ⊏P z. Hence, we must have y ⊏P z.

2) Suppose x ⊏ z and y ⊏P z. Let us assume y ⊏ x. It
would follow from Proposition 2.1 that y ⊏ z, which
would contradict y ⊏P z. Hence, we must have y ⊏P x or
y 6⊏ x.

3) Suppose x ⊏P y and y ⊏ z. Let us assume z 6⊏ x. By
Proposition 3.1, we would have y 6⊏ x. It would follow
from Proposition 1 that x 6⊏ y, which would contradict
x ⊏P y. Hence, we must have z ⊏ x or z ⊏P x.

Proof of Proposition 5 (Partial Embedding and Nonem-
bedding of Choices).

1) Suppose x ⊏P y and y 6⊏ z. Let us assume x ⊏ z. It
would follow from Corollary 2.1 that x 6⊏ y, which
would contradict x ⊏P y. Hence, we must have x ⊏P z or
x 6⊏ z.

2) Suppose x ⊏P y and x 6⊏ z. Let us assume y ⊏ z. It would
follow from Corollary 2.1 that y 6⊏ x, which would
contradict x ⊏P y according to Proposition 1. Hence, we
must have y ⊏P z or y 6⊏ z.

The proofs of Dual Propositions 1 to 5 are similar to those
of Propositions 1 to 5.

Proof of Proposition 6 (Generalization Property). Given
any valid choice x, for any B ∈ TF , B ∈ TF ({x}) ⇔ {x} ⊆
B ⇔ x ∈ B ⇔ B ∈ TF (x).

Proof of Lemma 1 (Full Embedding Lemma). Suppose
B1 ⊆ B2. For any B ∈ TF (B2), by Definition 4, we must
have B ∈ TF (B1). By Definition 5, therefore, we have
B2 ⊏ B1.

Proof of Proposition 7 (Mutual Exclusion of Fully Em-
bedded and Nonembedded Choices). Assume there exists
a valid choice y ∈ B such that y ⊏ x. By Lemma 1, we have
B ⊏ y. Hence, by Dual Proposition 2.1, we have B ⊏ x.
Assume there exists a valid choice z ∈ B such that z 6⊏ x. By
Lemma 1, we have B ⊏ z. Hence, by Dual Proposition 3.1,
we have B 6⊏ x. Thus, we have a contradiction.

Proof of Proposition 8 (Test Frame Containing Nonem-
bedded Choice). Since y ∈ B, by Lemma 1, we have B ⊏ y.
Hence, by Dual Proposition 3.1, if y 6⊏ x, then B 6⊏ x. By
Dual Proposition 1, we can also conclude that x 6⊏ B.

Proof of Proposition 9 (Test Frame Containing Fully
Embedded Choice).

1) Since y ∈ B, by Lemma 1, we have B ⊏ y. Hence, by
Dual Proposition 2.1, if y ⊏ x, then B ⊏ x.

r) Suppose there exists some z ∈ B such that x ⊏P z.
By Lemma 1, we have B ⊏ z. Hence, by Dual
Proposition 4.2, we have x ⊏P B or x 6⊏ B. Now,
according to part 1 of this proposition, we have B ⊏ x.
Hence, by Dual Proposition 1, we cannot have x 6⊏ B.
Thus, we must have x ⊏P B.
Suppose there is no z ∈ B such that x ⊏P z. Since B ⊏ x,
by Dual Corollary 2.1, we can only have x ⊏ B or
x ⊏P B. Assume that x ⊏P B. From Definition 5.2, we
would have TF (x) 6⊆ TF (B). By Definitions 2 and 4,
there would exist some B′ ∈ TF such that x ∈ B′

and B 6⊆ B′. In other words, there would exist some
B′ ∈ TF and z ∈ B such that x ∈ B′ and z 6∈ B′. This
would contradict the nonexistence of z ∈ B such that
x ⊏P z. Hence we must have x ⊏ B.

Proof of Proposition 10 (Test Frame Containing Fully
Embedding Choices Only). The result follows directly from
Definitions 4 and 5.
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